Pressure and kinetic energy transport across the cavity mouth in resonating cavities.
نویسندگان
چکیده
Basic properties of the incompressible fluid motion in a rectangular cavity located along one wall of a plane channel are considered. For Mach numbers of the order of 1×10(-3) and using the incompressible formulation, we look for observable properties that can be associated with acoustic emission, which is normally observed in this kind of flow beyond a critical value of Reynolds number. The focus is put on the energy dynamics, in particular on the accumulation of energy in the cavity which takes place in the form of pressure and kinetic energy. By increasing the external forcing, we observe that the pressure flow into the cavity increases very rapidly, then peaks. However, the flow of kinetic energy, which is many orders of magnitude lower than that of the pressure, slowly but continuously grows. This leads to the pressure-kinetic energy flows ratio reaching an asymptotic state around the value 1000 for the channel bulk speed Reynolds number. It is interesting to note that beyond this threshold when the channel flow is highly unsteady-a sort of coarse turbulent flow-a sequence of high and low pressure spots is seen to depart from the downward cavity step in the statistically averaged field. The set of spots forms a steady spatial structure, a sort of damped standing wave stretching along the spanwise direction. The line joining the centers of the spots has an inclination similar to the normal to the fronts of density or pressure waves, which are observed to propagate from the downstream cavity edge in compressible cavity flows (at Mach numbers of 1×10(2) to 1×10(3), larger than those considered here). The wavelength of the standing wave is of the order of 1/8 the cavity depth and observed at the channel bulk Reynolds number, Re~2900. In this condition, the measure of the maximum pressure differences in the cavity field shows values of the order of 1×10(-1) Pa. We interpret the presence of this sort of wave as the fingerprint of the noise emission spots which could be observed in simulations where the full compressible formulation is used. The flow is studied by means of a sequence of direct numerical simulations in the Reynolds number range 25-2900. This allows the study to span across the steady laminar regime up to a first coarse turbulent regime. These results are confirmed by the good agreement with a set of laboratory results obtained at a Reynolds number one order of magnitude larger in a different cavity geometry [M. Gharib and A. Roshko, J. Fluid Mech. 177, 501 (1987)]. This leaves room for a certain degree of qualitative universality to be associated with the present findings.
منابع مشابه
CFD Analysis of Single and Double Cavity Based Scramjet Combustion with Front Ramp Angle at Mach 2
Modern high speed aerospace propulsion relies on the development of scramjet engines significantly. Design of a supersonic combustor involves the potential problems of proper mixing, flame holding as well as flame stabilization within the very short period. Many techniques were introduced to overcome these problems, of which cavity flame holders has evolved as one of the prominent among them. T...
متن کاملCoherent Transport of Single Photon in a Quantum Super-cavity with Mirrors Composed of Λ-Type Three-level Atomic Ensembles
In this paper, we study the coherent transport of single photon in a coupled resonator waveguide (CRW) where two threelevel Λ-type atomic ensembles are embedded in two separate cavities. We show that it is possible to control the photon transmission and reflection coefficients by using classical control fields. In particular, we find that the total photon transmission and reflection are achieva...
متن کاملEffects of Geometrical Dimension on Mixed Convection Heat Transfer in Cavities
In this paper, mixed forced and natural convection heat transfer in a rectangular cavity has been numerically studied. the cavity receives a uniform heat flux from one side and is ventilated with a uniform external flow. The external flow enters the cavity from the heated side and leaves the cavity from the opposite side. The velocity and temperature fields and heat transfer rate are determined...
متن کاملNumerical Simulation of Separation Bubble on Elliptic Cylinders Using Three-equation k-? Turbulence Model
Occurrence of laminar separation bubbles on solid walls of an elliptic cylinder has been simulated using a recently developed transitional model for boundary layer flows. Computational method is based on the solution of the Reynolds averaged Navier-Stokes (RANS) equations and the eddy-viscosity concept. Transitional model tries to simulate streamwise fluctuations, induced by freestream turbulen...
متن کاملNumerical Simulations of Fluidic Control for Transonic Cavity Flows
A numerical study is conducted to investigate fluidic control for transonic flow over an open cavity. Numerical results are obtained for the unsteady threedimensional flow with different steady mass injection rates upstream of the cavity. The simulations use a hybrid two-equation turbulence model in the Detached Eddy Simulations (DES) to calculate the flow and acoustic fields. Computational res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 87 1 شماره
صفحات -
تاریخ انتشار 2013